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Short-wave oscillations of shells located in a certain sufficiently narrow bound- 

ary region, are investigated. An asymptotic integration procedure is constructed, 
by analogy with the methods presented in papers [l, 21. Attention is paid mainly 

to the natural oscillations of shells. but forced oscillations are also considered at 

the end of this paper. The region of the oscillations here investigated is arbitra- 

rily divided in two parts: one low frequency and the other high frequency. The 
equation of the first approximation for high frequency oscillations is the simplest, 

therefore this equation is considered first of all and the asymptotic procedure of 
integration is constructed ; afterwards this method is generalized for low frequen- 

cy short-wave oscillations of shells. 

1. In this paper the oscillations are considered to be short-wave, if they are defined 

by the equations of a rapidly varying state of stress. Moreover, the so-called quasitrans - 
verse oscillations are considered when in the equations the inertial terms relating to tan- 

gential displacements, are discarded. With these assumptions the equations are written 

in the following form (using here the notation from the monograph [3]) : 

h12 A2 w - h-’ h-’ A, c - h2 w = 0, A2 =pE-‘02EhA.,w+ (1.1) 

A2 c = 0, h12 = h2 [3 (1 - 02)l-l, A = B-l& @?a,) + 

A-‘dp (A$), 8, = A-‘8 i aa, dl, = B-l d / b’@ 

A1 = B-%5’, (BR,‘d,) + A-‘dp (/-1&Z,-l a,) 

It is assumed that the system of coordinates for the middle surface is referred to the prin- 
cipal lines of curvatures and the boundary is represented as a smooth convex line without 
corners (convexity condition will be considered later) ; the middle surface must be suf- 
ficiently smooth. Oscillations with frequencies satisfying the inequality 

3L > max (RI-l, R,-l) (1.2) 
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in the whole region will be considered as high frequency oscillations. In this case we 

neglect those terms of the system which contain the radii of curvatures. Hence, construc- 
ting the first approximation we obtain the equation 

h12 A2w - J.2w = 0 0.3) 

We note that the applied simplifications are entirely valid and the approximate solu- 

tion, if required, can be made more exact within the given asymptotic error, using the 

known procedure. Here only the first approximation will be constructed. The oscillations 

defined by Eq. (1.3), are denoted in [4] as the quasitransverse oscillations of a large vari- 

ability ; nontangential boundary conditions are used for them (tangential conditions on 
the boundary are not taken into account in the first approximation). 

Let us consider three most widely used forms of nontangential boundary conditions: 

hinged support, rigid clamping and free edge, In the case of a hinged support on the 

boundary, the perpendicular sag of the shell and the moment are equal to zero. These 

conditions are reduced to the following ones : 

If’ _:1T $,2Ui = 0 (1.4) 

For rigid clamping 
u? =d,w =O (1.5) 

For a free edge 
dn2 w + Da,2 w = 0, a, Ia,2 w + (2 - a) a,2 WI = 0 

Equation (1.3) can be expressed by two equations 

L!%w, - 3Lppw1 = 0, a 2L’a -+- hpg wa ~= 0, h,, ZZZ 3Lihi-r (1.6) 

It is not difficult to see that in the case of a hinged support, it is sufficient to integrate 
the second equation for the boundary condition w = 0. The remaining second condition 

of (1.4) is satisfied automatically in conformity with the equation. The problem (1.5) 

as it will be shown later, is also reduced to the integration of the second order equation, 

i. e. of the second equation of (1.6). It gives the oscillating integrals and we shall pro- 
ceed with their construction. We shall consider the oscillations located in a sufficiently 

narrow boundary region of the shell. We express the equation in the coordinates (s, n), 
where s is the length of the boundary arc, TZ is the arc length of the middle surface 

curve, orthogonal to the boundary 

A w + kp, c (n, s) w --= 0, A = n (s, n) a,2 + b (Y, n) d,’ 0.7) 

Here only the terms with higher derivatives are retained and for purpose of generalization 
the coefficient c is added which does not complicate the mathematical operations. By 
introducing this coefficient,we facilitate a further generalization of the method for exa- 
mination of low frequencies and,in addition,it can characterize a variable density or 
rigidity of the shell. 

In conformity with [ 21 we construct the solution of Eq. (1.7) in the form 

U1 = 1/ ($ I ‘p) $Po (1.8) 

where CD and y are the unknown functions, p is the unknown larger parameter deter- 
mined by the natural frequency (it is specified in the problem of forced oscillations), and 
U is the Airy function satisfying the equation 
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2, N (x) - x2, = 0 

It will be necessary to use here the following asymptotic properties of the Airy function 

u(--r~)=r-‘/~,inIs’/~+ 
\3 

+> (1 -+ 0 (5-Q)) 

u (II: > 1) = l/s x-‘/aexp (- a/s X5:*) (1 + 0 ($9)) 

We note that in [2] the Helmholtz equation has been considered for the region bounded 

by a convex curve. The integration procedure was constructed assuming that the caustics 

from the Helmholtz equation in [2] are known (caustics are the lines which have the 

following property: a ray leaving the caustic tangentially and reflected from the bound- 

ary according to the law of equality of the incident and reflected angles, returns tangent- 

ially to the caustic). The method suggested in this paper does not assume that the caus- 
tics are already known, they are found during the solution procedure ; moreover, the me- 

thod is generalized for equations with variable coefficients. 
We substitute (1. 8) into (1.7) and reducing the exponential factor we obtain 

Ps [Y (VY)s _ (V ~)s] u - 2ips/a v’ (VYV@) + ipt~ A@ + 

pe:3 v’ AY + APQ cv = 0 

v =Jf/asa,+~Lla,, (VY, VCD) = n Y,, @,, + bYJ% 

Here 3LPq are the natural frequencies. Taking into account that the functions u, D’ 

are linearly independent, we obtain 

p2 [‘Lp (VY?)2 - (V@)“l + ip ACD + h,, c = 0 

2ip”‘3 (VY, V(D) + p” AY = 0 

We find the functions CD, 9 and the natural frequencies 3LPq in the form 

(11 ZZ x @iP, Y = ~ Yip-it hpq = P2 + Xlp + x p+X-i (la ‘1 

Substituting these sums into the preceding equations and equating coefficients of equal 
powers of p, we obtain a recurrent system of equations 

YIJ (VYcJs - (V(DJ2 + c = 0, (VYO, VO’,) = 0 (1.10) 

Yi (VY,J2 $ 2Y, (VY,,, VY?i) - 2 (VO,, VcDi) + x-i = Fi 

(V(I)‘,, VYJ + (VP,,, VOJ = G, 

Here only the first pair of equations defining the functions ‘To and CD,, is nonlinear. 
The right-hand sides of the following pairs of equations are known functions if the solu- 

tions of the preceding equations are known. The boundary conditions for the functions 
@ and Y follow from the conditions for the function w. In the case of the problem 

(1.4) we have 

p” Y (s, n = 0) = t,, q= 0, 1, 2, . . ., [PQI =2nn, n>l 

where t, are the roots of the Airy function; the square brackets denote the increase of 
the function as a result of passing along the boundary of the region. Replacing the func- 
tions Y and CL, by their expansions, we obtain 

Y, = tQp-*iS, Yi = 0, i = 1, 2, 3, . . ., [CD,1 = 2 ?Znp-l, [@iI = 0 
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In the problem (1.4) the function ‘p has a constant value on the boundary. This facili- 
tates essentially the construction of the functions ‘l?i and @i. The boundary conditions 
for all approximations, beginning with i = 1, are homogeneous. 

Let us consider the conditions for a rigid clamping (1.5). We construct the solution 

for the system (1.6) transformed to coordinates (n, s) in the form 

20 i = FePf, ws Z 2~ (p*/: \y) &PO (1.11) 

The equations for the functions Y and 0 are written above. The equations for the 

first approximation of the functions f and P, if they are sought in the form of expan- 

sions (1.9) are the following : 

(~f,)~ - c = 0, (Vj,, V f’,) + F, A fo = 0 

f = Xf&, F .-_ ZFip-i 

Substituting (1.11) into (1.5). we obtain on the boundary the equalities (postulating tem- 

porarily that u (p”~ Y) is a slowly varying boundary function) 

f. = i(l),,, fi - iCD,, u (p*i3 Y’) + F = 0 (1.12) 

ip(D,, + pp;3 ‘F,,v’ + pf,,, F + F,n = 0 

The boundary condition defines two functions of f. We choose the one for which the 
function zu rapidly decreases with distance from the boundary to the region’s interior 

(the rapidly increasing component of the solution is discarded). The boundary value of 
the function y is small because the width of the boundary region is small. Then accord- 

ing to the second equation of (1.10) the product y,, @,, must be small. The assump- 
tion that the derivative y,,, is small must be discarded since the known solution for the 
circle with CL = h = c = 1 does not result from the general solution. Essentially, the 

suggested method is based on the fact that the form of the solution is guessed by compar- 

ing with the standard solution for the circle, As a result, we obtain that the function CD,, 
represents a small value on the boundary and can be neglected in the third equation of 
(1.12). Now equating for the boundary conditions (1.12) coefficients of the same powers 

of p, we obtain the following equality c (p ‘13 Y) = 0 ; hence, in this case the boundary 
value of function Y is also equal to the value ‘l? = t p p-‘i3. The assumption that the 

derivative a,,, is small on the boundary now becomes a fact that on the boundary this 

derivative is equal to zero. 
Analogously, it is proved that in the case of a free edge the first approximation of the 

function Y is equal to Y = tq’p-*/3, where t, ’ are the roots of the function 2,‘. The 
next approximation of the boundary values of the unknown functions are obtained by a 
successive writing-out of the boundary conditions in a recurrent system of conditions and 
equating the coefficients of the same powers of P- 

2. We construct the solution of the first two equations from (1.10) (for simplicity the 
indices of the zero-order approximation are omitted) 

Y (uYrs2 + bY,,Z) - (acD,s6z + b@,n2) + c = 0 (2.1) 
(l’F,‘,,d),s -j- b~r,JD,, = 0 

Y (s, IL = 0) = E, [CD] = 2 nnp-’ 
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Here one of the two values t, @is, t,‘p-va is denoted as a small value of E . As the 
solution has to be found for a narrow strip n < 1, we construct the functions ‘P and 

clr in the form of the Taylor expansions with respect to the coordinate rt 

‘k’ = 2 Y,ni, Cl) = 2 cDini (2.2) 

0 0 

where Yi and (Di are functions of the boundary arc. 

It follows from the first boundary condition and the second equation of (2.1). that 

Y0 = E, 01 = 0, Yo+ = 0 

Substituting (2.2) into (2. l), after expanding the coefficients into series with respect to 

n and equating the coefficients of the same powers of n, we obtain a recurrent sequence 

of equations. We write here the equations determining the approximations Yj, cD~, 
i =O, 1, 2 

&b”Y,2 - n, (D:,,s + cg == 0 
(2.3) 

8 (4b,Y1Y, + blY”,‘) + b,,Y? - cl,<l);_$ + Cl = 0 

%Y&o,s + 2b,%pl(D, == 0 

e (cIO’Iys $- 4h,Y,’ -k Gh,Y,Yk”, + 4bl’tP,Y, + b,Y,2) t 
3517 II Y,” f” o + olYl:~ - 2f10~~)o,sd)2, s - cqJ);,s - 4b&njZ + cg =: 0 

0 *T&JO,s + ill 0 ‘~l,,oo,s + 3h,Y,Y3 -;m- 4b,, 1”,@, + 2b,Y@, = 0 

U = 2 ai?Zi, 0 = 2 bini, c = 2 cini 
I, 0 0 

There is one arbitrary function (mats or YJ in 
determined by it. As a small parameter Y, = E 
the required solutions in the asymptotic sums 

@i = 2 QijEj, ypi = 
jzo 

the system, the other functions are 
is present in the equations, we expand 

,F: yi4 (2.4) 

Substituting these sums into system (2.3) and equating coefficients of the same powers 

of E, we obtain a new recurrent system of equations. We present the equations for the 
first three approximations I[)io, \riO, i = 0, 1, 2 

- a,@$,, + co = 0, b,,Yu,3 - a,@,2,,,, + cl = 0 

2boYdh + ~oYm%o,s = 0 

5boYmYm + b,Ym3 - .%,Q,n.s@3,,s - n,a&.s - 4b@m2 + ~2 = 0 

3b,~m%, + ~'f'"20,s%m,s + a~Yd&,,s + 4b,‘E”&,, + ~bJW’,o = 0 

The equations for the second approximations cDi,, Yylil, i = 0, 1 

b,Y,02 - 2a,m~,s(D~~,s = 0 

4b,Y,,Y,, + b,Yl,Y + Sb,Yu,YP,, - 2QR3o,s~o1,s = 0 

a0 wm,s%,s + ‘!i’ll,S @,,o,s) + 2b, Wplo% + ‘U,,@,O) = 0 

The equations for the third approximations yrs, a,,, 
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We write the following approximations: 

Substituting the function @ into the second boundary condition (2. l), we obtain the 
equation for determining the parameter p and the first approximation for the natural 

frequency 

To construct the natural frequency with an acceptable accuracy when in the neighbor- 

hood there is no other natural frequency within the range of error of determination, it is 

necessary to construct the second approximation for the expansion (1.9), i. e. to find x1 
from the condition [@,,I = 0. In this case iPq , the error of determination is of the 

order 0 @-‘), i.e. essentially smaller than the average interval between the eigen- 

functions which is of the order of 0 (1). To construct the further approximations to the 

natural frequencies of oscillation of shells, the equations quoted here are not sufficient, 
and more elaborate equations have to be used. Therefore we limit ourselves to the first 

approximation only, i. e. we define the frequencies with an error of 0 (1). 
We note that the oscillations located in the boundary zone are not possible in every 

region of the shell. It is not difficult to show that the condition 

(2.5) 

must be satisfied on the boundary. 
If this inequality is not satisfied, the eigenfunctions cannot be constructed in the form 

(1.8). This condition is a generalized condition of convexity of the boundary curve in 

the problem for the Helmholtz equation on a plane [2]. Let us consider the line onwhich 
the argument of the Airy function vanishes, \y = 0. This line separates the region of 

the shell, where the solution rapidly oscillates (Y < 0) from the region (Y > 0) in 

which the eigenfunctions rapidly decrease with the distance from the line. This line 
belongs to the family of so-called caustics. If we limit the expansion (2.2) to two terms, 
the caustic is defined by the equation 

n 7 Y()Y,-1, Y. = e, ‘PI = Y,, + EYY,, 

Let us consider some properties of the functions @, Y in the caustic’s neighborhood. 

We transform Eq. (2.1) into the coordinate system (a, Y), where T is the length of the 
caustic arc, Y is the distance along its normal. It follows from the equations that 

w __z 0, (#),,a = ca-1, a,” 7zz 0 

Differentiating the first equation of (2.1) with respect to v and substituting the values 
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of the functions obtained, we find that on the caustic 

where ai, bi, ci, i = 0,l are the coefficients of the functions a, b, c expanded in 

Taylor series with respect to Y in the neighborhood of the caustic. The limitation(2.5) 

concerning the form of the boundary is also valid for the caustic. 

Introducing a system of coordinates formed by the family of t-lines, where Y = const, 
and the family of v-lines orthogonal to r-lines, the solution of the system (2.1) obtains 

the form 7 - 
CD= ’ 

al/ 
s; &, @2 = + ” b-‘1” a, y c _ c,y “‘dv 

s ( a 1 
‘0 0 

Formally, a separation of the coordinates takes place in this system, the function CD de- 
pends only on r, while Y depends only on v. 

Let us show the relation between the system (2.1) and the eikonal equation. If we in- 
troduce the substitution 

s+ = CD - 21, (- Y)‘h, s- zz @ + V3 (- Y)‘/p (2.6) 

the system (2.1) is reduced to the equations 

(VA+)2 = c (2.7) 

The problem would be reduced to these equations (really to one equation), if the solution 

was constructed not in the form (1.8) but in the form 

U, = F,$Pf 

3. Now let us consider the range of medium frequencies quasi-transverse oscillations 
of great variability when the frequencies are of the order of maximum of the principal 
curvatures of the middle surface, but exceeding this maximum. In this case the state of 
stress is defined by Eqs. (1.1). Limiting the examination to the first approximation, we 
can neglect in these equations the terms with lower derivatives. Then, the system is re- 

duced to one equation 

h12A4w $ A12w - 3L2Azw = Q 

We construct the solution in the form (2.10) 

1” = F&t , k2 = A,, + p%, + . . ., p = hi”’ (3.1) 

As a matter of fact, variability of the solution of Eqs. (1.1) is specified, i.e. the parame- 

ter p is known in this case. The asymptotic procedure of integration for the solution in 
the form (3.1) is presented in [5-7~ Unlike in these papers we have here oscillating integ- 

rals, i.e. there are purely imaginary solutions for the function 1. 

As before, we shall examine the oscillations located in a sufficiently narrow boundary 
zone. We transform the equation to coordinates (s, n), assuming for simplicity that the 
boundary coincides with the line of principal curvature. The first approximation of the 
function f satisfies the following equation (we omit the index zero): 

(VP + Pin” - &l CV4 = 0 (3.2) 
(Cf)” = c-&~ + bf,,2, (V,f)’ = aof:,’ -k b’f,,? 

n ::: A -2 , b = B-2, ne r;= il-2R2-l, b” = B-2.‘!?1-1 
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It was assumed in [S - 71 that the function f on the boundary is specified. In the eigen- 

value problem the boundary value is not specified, it must be determined. Equation 

(3.2) has purely imaginary solutions which in this case are the fundamental ones and 

have to be constructed first . The remaining real and complex integrals are defined by 
the boundary values of the imaginary solution, as the function f (1.12) was determined 

in Sect. 2. 
We construct the imaginary integrals of Eq. (3.2) using the substitution (2.6) which 

allowed Eq, (2.7) to be replaced by the system (2. l), which is convenient for construct- 

ing the solution in the form of series 
f’ := cf, Ii_ ‘/a (- ‘I!):liz 

(3.3) 

Substituting (3.3) into (3.2) we obtain the following two equations for the functions (1) 

The functionals L1”, L,” are obtained replacing the operator 0 by c1 in the function- 

als L,, La . The boundary conditions for the functions 0 and ‘p have the form (2. l), 

i.e. they are like those in Sect. 2 (it is obvious that the derivation of the conditions 

(2.1) is generalized for the problem considered here). As previously, the value of the 
function y is small on the boundary. 

We find the functions @ and Y in series form (2.2), the coefficients @)i and Yi of 

which we express by the asymptotic sums (2.4). Substituting, as described above, the 
series into the equations and equating the coefficients of like powers of IL and of the 

parameter p, we obtain a recurrent system of equations. We cite the equations only for 

the first approximation (the other equations are not given here as they are somewhat 
cumbersome ; they have the structure of the equations presented in Sect. 2): 

Discarding the zero roots in the equation for @,,,,s , we obtain 

(3.4) 

It has been assumed above that the frequencies under consideration exceed in value the 
principal curvatures of the middle surface in the whole region. In this case the right side 

of Eq. (3.4) exceeds zero and consequently, there are two pure imaginary solutions 

We note that it is possible to reduce somewhat the constraint on the values of the fre- 
quencies and to require that they exceed the principal curvatures only in a certain boun- 
dary region which exceeds dimensionally the oscillation zone of the eigenfunctions. 
The limitation (1.2) can also be relaxed in that the inequality has to be satisfied in the 
neighborhood of the boundary. The equation of the first approximation yr, of the func- 
tion Y can be represented in the form 
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Hence, it is obvious that the coefficients of Eq. (1.1) and the boundary must be such that 
the function Y’,, differs from zero (yp-1 ) 0). This condition represents a generaliza- 

tion of the condition (2.5). Only by satisfying this inequality, the iteration procedure for 

constructing the following approximations is possible and convergent. 

The first approximation for the natural frequencies is determined from the periodicity 

condition of the function w with respect to the boundary 

P \ moo, .s ds = 2nn 
c 

Substituting the value of p from (3.1) and @,,O,s from (3.5),we obtain the following 

equation for 3L0 : 

As in Sect. 2, the first approximation for the natural frequency does not depend on the 

exact form of the boundary conditions, the influence of which appears in further appro- 
ximations. 

The boundary of the oscillating zone is defined by the equation Y = 0, the first ap- 

proximation of which has the form : II = - Yv,Yy,,-l. 
Beside the oscillating part of the solution, three other solutions of the form (3.l),rapid- 

ly decreasing with the distance from the boundary, take part in satisfying the boundary 

conditions. The functions f in the index of the exponent, are constructed from Eq. (3.2) 

with respect to the boundary value fk == iCD, where CD is defined by the formula (3.5). 

These functions participate in the iteration procedure, starting with the second step. We 
note that the question of constructing the function f is considered in detail in [6, 71. 

The problem of forced oscillations of shells with rapidly oscillating boundary condi- 

tions is solved in the following manner. An integration method for the differential equa- 

tions with rapidly oscillating boundary conditions was worked out in [6, 71 for the case 

when all integrals (3.1) decrease with the distance from the boundary. This method is 

applied to the problem of forced oscillations with the following alterations. According 

to the method suggested above, the functions f which are pure imaginary, are found for 

specified boundary values. The integration procedure shows whether the given frequency 

coincides with the natural one. If there is no coincidence, the integration is performed 

within the required asymptotic accuracy. 
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A condition is formulated which is the generalization of the fracture variational 

principle in piezoelectric media. In some cases such a representation of the frac- 

ture condition, which permits the determination of crack development in a piezo- 

electric material, turns out to be preferable to the analogous condition obtained 

in Cl]. 
The problem of a disc-shaped crack developing on the boundary between a 

piezoelectric ceramic and an elastic isotropic conductor is considered as an 

illustration. 

1. VIrlrtfonrl principle of the fracture mrchrnio of pieao- 
electric media. The stress components uij (i, i = 1, 2, 3) and the components 

of the electric induction vector of a piezoelectric medium satisfy the equilibrium equa- 
tions and the Maxwell equation in the statistical case 

as.. 
-2 = ai3. 
axj 0, A= 

arj 0 (1.1) 

In Cartesian coordinates referred to the crystal-physics axes, for a piezoelectric medium 

C21 (1.2) 

Di = ekliEk/ f Ei,“E, (i, i, k, 1 = 1, 2, 3) 

Here C2h.l are the elastic moduli of the medium, eijr are the piezoelectric moduli, 

eigs are the adiabatic dielectric constants, ,Y:‘, are the electric field strength compon- 
ents, and Ekl are the strain tensor components. 

To derive the condition governing crack development in a piezoelectric material, let 
us examine a number of possible body states just as in [3, 41. Suppose there is no crack 
in the body in State 1, and external loads and an electrical potential Cp (Ek = @ids,) 
is specified on the body surface s , The stresses oijl, the displacement vector uilr the 


